7,966 research outputs found

    The labial gene is required to terminate proliferation of identified neuroblasts in postembryonic development of the Drosophila brain

    Get PDF
    The developing brain of Drosophila has become a useful model for studying the molecular genetic mechanisms that give rise to the complex neuronal arrays that characterize higher brains in other animals including mammals. Brain development in Drosophila begins during embryogenesis and continues during a subsequent postembryonic phase. During embryogenesis, the Hox gene labial is expressed in the developing tritocerebrum, and labial loss-of-function has been shown to be associated with a loss of regional neuronal identity and severe patterning defects in this part of the brain. However nothing is known about the expression and function of labial, or any other Hox gene, during the postembryonic phase of brain development, when the majority of the neurons in the adult brain are generated. Here we report the first analysis of Hox gene action during postembryonic brain development in Drosophila. We show that labial is initially expressed in six larval brain neuroblasts, of which only four give rise to the labial expressing neuroblast lineages present in the late larval brain. Although MARCM-based clonal mutation of labial in these four neuroblast lineages does not result in an obvious phenotype, a striking and unexpected effect of clonal labial loss-of-function does occur during postembryonic brain development, namely the formation of two ectopic neuroblast lineages that are not present in wild-type brains. The same two ectopic neuroblast lineages are also observed following cell death blockage and, significantly, in this case the resulting ectopic lineages are Labial-positive. These findings imply that labial is required in two specific neuroblast lineages of the wildtype brain for the appropriate termination of proliferation through programmed cell death. Our analysis of labial function reveals a novel cell autonomous role of this Hox gene in shaping the lineage architecture of the brain during postembryonic development

    An experimental comparison of nonswirling and swirling flow in a circular-to-rectangular transition duct

    Get PDF
    Circular-to-rectangular transition ducts are used as exhaust system components of aircraft with rectangular exhaust nozzles. Often, the incoming flow of these transition ducts includes a swirling velocity component remaining from the gas turbine engine. Previous transition duct studies have either not included inlet swirl or when inlet swirl was considered, only overall performance parameters were evaluated. Circular-to-rectangular transition duct flows with and without inlet swirl were explored in order to understand the effect of inlet swirl on the transition duct flow field and to provide detailed duct flow data for comparison with numerical code predictions. A method was devised to create a swirling, solid body rotational flow with minimal associated disturbances. Coefficients based on velocities and total and static pressures measured incross stream planes at four axial locations within the transition duct, along with surface static pressure measurements and surface oil film visualization, are presented for both nonswirling and swirling incoming flow. In both cases the inlet centerline Mach number was 0.35. The Reynolds number based on the inlet centerline velocity and duct inlet diameter was 1,547,000 for nonswirling and 1,366,000 for swirling flow. The maximum swirl angle was 15.6 deg. Two pair of counter-rotating side wall vortices appeared in the duct flow without inlet swirl. These vortices were absent in the swirling incoming flow cases

    An experimental trace gas investigation of fluid transport and mixing in a circular-to-rectangular transition duct

    Get PDF
    An ethylene trace gas technique was used to map out fluid transport and mixing within a circular to rectangular transition duct. Ethylene gas was injected at several points in a cross stream plane upstream of the transition duct. Ethylene concentration contours were determined at several cross stream measurement planes spaced axially within the duct. The flow involved a uniform inlet flow at a Mach number level of 0.5. Statistical analyses were used to quantitatively interpret the trace gas results. Also, trace gas data were considered along with aerodynamic and surface flow visualization results to ascertain transition duct flow phenomena. Convection of wall boundary layer fluid by vortices produced regions of high total pressure loss in the duct. The physical extent of these high loss regions is governed by turbulent diffusion

    ADEPT - Next Generation Process Management Technology

    Get PDF
    In the ADEPT project we have been working on the design and implementation of a next generation process management technology for several years. Based on a conceptual framework for dynamic process changes, on innovative process support functions, and on advanced implementation concepts, the developed system enables the realization of adaptive, process-aware information systems (PAIS). Basically, process changes can take place at the process type as well as the process instance level: Changes of single process instances may have to be carried out in an ad-hoc manner (e.g., to deal with an exceptional situation) and must not affect system robustness and consistency. Process type changes, in turn, must be quickly accomplished in order to adapt the PAIS to business process changes. This may also include the migration of (thousands of) instances to the new process schema (if desired). Important requirements are to perform respective migrations on-the-fly, to preserve correctness, and to avoid performance penalties

    X-Ray Scattering at FeCo(001) Surfaces and the Crossover between Ordinary and Normal Transitions

    Full text link
    In a recent experiment by Krimmel et al. [PRL 78, 3880 (1997)], the critical behavior of FeCo near a (001) surface was studied by x-ray scattering. Here the experimental data are reanalyzed, taking into account recent theoretical results on order-parameter profiles in the crossover regime between ordinary and normal transitions. Excellent agreement between theoretical expectations and the experimental results is found.Comment: 9 pages, Latex, 1 PostScript figure, to be published in Phys.Rev.

    ADEPT2 - Next Generation Process Management Technology

    Get PDF
    If current process management systems shall be applied to a broad spectrum of applications, they will have to be significantly improved with respect to their technological capabilities. In particular, in dynamic environments it must be possible to quickly implement and deploy new processes, to enable ad-hoc modifications of single process instances at runtime (e.g., to add, delete or shift process steps), and to support process schema evolution with instance migration, i.e., to propagate process schema changes to already running instances. These requirements must be met without affecting process consistency and by preserving the robustness of the process management system. In this paper we describe how these challenges have been addressed and solved in the ADEPT2 Process Management System. Our overall vision is to provide a next generation process management technology which can be used in a variety of application domains

    High-frequency dynamics in the near-surface region studied by inelastic x-ray scattering: The case of liquid indium

    Get PDF
    Inelastic x-ray scattering in grazing angle geometry provides a novel tool for studying the surface and bulk lattice dynamics in a single experiment by varying the incidence angle around the critical angle of total reflection. At very small incidence angles (below the critical angle), it is possible to study the collective dynamics in a subsurface region of a few nanometres at interatomic length and time scales. An experimental study on liquid indium in the near-surface region is presented here and the results are analysed within a theoretical framework, based on classical hydrodynamics for the height-height fluctuations (capillary waves and non-propagating fluctuations) and generalized hydrodynamics for the bulk density fluctuations. The investigation reveals the presence of capillary waves in the inelastic x-ray spectra as an additional contribution at zero-energy transfer and a modification of the bulk density fluctuation contribution. A longer structural relaxation time and a larger longitudinal viscosity with respect to bulk indium are observed, similarly to related studies in confined liquids. Š IOP Publishing Ltd and Deutsche Physikalische Gesellschaft

    Streamlining Shuttle Ground Operations

    Get PDF
    To meet NASA Space Transportation System goals the Shuttle Processing Contractors have to reduce Space Transportation System ground processing time and ground processing costs. These objectives must be met without compromising safety of flight or safety during assembly, test, and service operations. Ground processing requirements are analyzed to determine critical serial flow paths and costly labor-intensive tasks. Processing improvements are realized by improvements in processing methodology, by application of computer-aided technology, and by modernization of KSC facilities. Ongoing improvement efforts are outlined and progress-to-date is described
    • …
    corecore